Part Number Hot Search : 
0T502 C8051 31142 BT6622 D20N03 TDA7235 18F2320 3N257
Product Description
Full Text Search
 

To Download BTS50015-1TAA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  automotive power data sheet rev. 1.3, 2014-06-03 BTS50015-1TAA smart high-side power switch
data sheet 2 rev. 1.3, 2014-06-03 BTS50015-1TAA table of contents 1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 general product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.1 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.1 output on-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.2 switching a resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.3 switching an inductive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.1.4 inverse current capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.5 pwm switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2 input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2.1 input circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2.2 input pin voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3 protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3.1 loss of ground protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3.2 protection during loss of load or lo ss of vs condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 5.3.3 undervoltage behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3.4 overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3.5 reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3.6 overload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3.6.1 activation of the switch into short circuit (short circuit type 1) . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3.6.2 short circuit appearance when the device is alread y on (short circuit type 2) . . . . . . . . . . . . 22 5.3.7 temperature limitation in the power dmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.4 diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4.1 is pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4.2 sense signal in different operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4.3 sense signal in the nominal current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4.3.1 sense signal variation and calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4.3.2 sense signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4.3.3 sense signal in case of short circuit to vs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4.3.4 sense signal in case of over load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 electrical characteristics BTS50015-1TAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 electrical characteristics table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 general product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.1 further application informat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 table of contents
type package marking BTS50015-1TAA pg-to-263-7-8 s50015a data sheet 3 rev. 1.3, 2014-06-03 smart high-side power switch BTS50015-1TAA 1overview application ? all types of resistiv e and capacitive loads ? suitable for inductive loads in conjunct ion with an effective, peripheral free wheeling circuit ? replaces electromechanical relays and fuses ? most suitable for applications with high current loads, such as heating system, main switch for power distri bution, start-stop power supply switch ? pwm application with low frequencies features ? one channel device ? low stand-by current ? wide input voltage range (can be driven by logi c levels 3.3v and 5v as well as directly by v s ) ? electrostatic discha rge protection (esd) ? optimized electromagnet ic compatibility (emc) ? logic ground independent from load ground ? very low leakage current on out pin ? compatible to cranking pulse requirement (test pu lse 4 of iso7637 and cold start pulse in lv124) ? embedded diagnostic functions ? embedded protection functions ? green product (rohs compliant) ? aec qualified description the BTS50015-1TAA is a 1.5m single channel smart high-side power switch, embedded in a pg-to-263-7-8 package, providing protective function s and diagnosis. it contains infineon ? reversave. the power transistor is built by a n-channel power mosfet with charge pump. it is specially designed to drive high current loads up to 80a, for applications like switched battery couplings, power distribution switches, heaters, glow plugs, in the harsh automotive environment. pg-to263-7-8
data sheet 4 rev. 1.3, 2014-06-03 BTS50015-1TAA overview embedded diagnostic functions ? proportional load current sense ? short circuit / overtemperature detection ? latched status signal after short circuit or overtemperature detection embedded protection functions ?infineon ? reversave: reverse battery protection by self turn on of power mosfet ?infineon ? inversave: inverse oper ation robustness capability ? secure load turn-off while de vice loss of gnd connection ? overtemperature protection with latch ? short circuit protection with latch ? overvoltage protection with external components ? enhanced short circuit operation table 1 product summary parameter symbol values operating voltage range v s(op) 8 v ? 18 v extended supply voltage contain dynamic undervoltage capability v s (dyn) 3.2 v ? 28 v maximum on-state resistance at t j = 150 c r ds(on) 3 m minimum nominal load current i l (nom) 33 a typical current sense differential ratio dk ilis 51500 minimum short circuit current threshold i l (ovl) 135 a maximum stand-by current for the whole device with load at t a = t j = 85 c i s (off) 18 a maximum reverse battery voltage at t a = 25 c for 2 min - v s(rev) 16 v
BTS50015-1TAA block diagram data sheet 5 rev. 1.3, 2014-06-03 2 block diagram figure 1 block diagram for the BTS50015-1TAA blockdiagram v s out in driver logic gate control & charge pump load current sense over temperature overvoltage clamp over current switch off voltage sensor gnd esd protection is internal power supply r vs
data sheet 6 rev. 1.3, 2014-06-03 BTS50015-1TAA pin configuration 3 pin configuration 3.1 pin assignment figure 2 pin configuration 3.2 pin definitions and functions pin symbol function 1gnd ground; ground connection 2in input; input signal for channel activation. high active 3is sense; provides signal for diagnosis 4, cooling tab vs supply voltage; battery voltage 5, 6, 7 out output; protected high side power output 1) 1) all output pins are internally connect ed and they also have to be connected together on the pcb. not shorting all outputs on pcb will considerably increase the on-state resistance and decrease the current sense / overcurrent tripping accuracy. pcb traces have to be designed to withstand the maximum current. 123 4 57 6
BTS50015-1TAA pin configuration data sheet 7 rev. 1.3, 2014-06-03 3.3 voltage and current definition figure 3 shows all terms used in this datasheet, with associated convention for positive values. figure 3 voltage and current definition v s in is gnd out i in i is v s v in v is i s i gnd v ds v out i out v b , is
data sheet 8 rev. 1.3, 2014-06-03 BTS50015-1TAA general product characteristics 4 general product characteristics 4.1 absolute maximum ratings table 2 absolute maximum ratings 1) t j = -40c to +150c; (unl ess otherwise specified) parameter symbol values unit note / test condition number min. typ. max. supply voltages supply voltage v s -0.3 ? 28 v ? 4.1.1 reverse polarity voltage -v s(rev) 0?16 v 2) t < 2 min t a = 25c r l 0.5 4.1.2 supply voltage for load dump protection v s(ld) ??45 v 3) r i = 2 r l = 2.2 r is = 1k r in = 4.7k 4.1.5 short circuit capability supply voltage for short circuit protection v s(sc) 5?20 v 4) r ecu = 20m l ecu = 1 h r cable = 6m /m l cable = 1 h/m l = 0 to 5m r , c as shown in figure 51 see chapter 5.3 4.1.3 short circuit is permanent: in pin toggles short circuit (sc type 1) n rsc1 ? ? 100k (grade d) ? 5) 4.1.4 gnd pin current through ground pin i gnd -15 ? 6) ? ? 10 7) 15 ma ? t 2 min 4.1.6 input pin voltage at in pin v in -0.3 ? v s v ? 4.1.7 current through in pin i in -5 -5 ? ? 5 50 6) ma ? t 2 min 4.1.8 maximum retry cycle rate in fault condition f fault ? ? 1 hz ? 4.1.9 sense pin voltage at is pin v is -0.3 ? v s v ? 4.1.10 current through is pin i is -15 ? 6) ? ? 10 7) 15 ma ? t 2 min 4.1.11
BTS50015-1TAA general product characteristics data sheet 9 rev. 1.3, 2014-06-03 notes 1. stresses above the ones listed here may cause perma nent damage to the device. exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. integrated protection func tions are designed to prevent ic destructi on under fault conditions described in the data sheet. fault conditions are considered as ?outside? normal operating range. pr otection functi ons are not designed for continuous repetitive operation. power stage average power dissipation p tot ??200w t c = -40c to 150c 4.1.15 voltage at out pin v out -64 ? ? v ? 4.1.21 temperatures junction temperature t j -40 ? 150 c ? 4.1.16 dynamic temperature increase while switching t j ??60 ksee chapter 5.3 4.1.17 storage temperature t stg -55 ? 150 c ? 4.1.18 esd susceptibility esd susceptibility (all pins) v esd -2 ? 2 kv hbm 8) 4.1.19 esd susceptibility out pin vs. gnd / v s v esd -4 ? 4 kv hbm 8) 4.1.20 1) not subject to production test, specified by design. 2) the device is mounted on a fr4 2s2p board according to jedec jesd51-2,-5,-7 at natural convection. 3) v s(ld) is setup without dut connected to the generator per iso 7637-1. 4) in accordance to aec q100-012 5) in accordance to aec q100-012. test aborted after 100,000 cycles. short circui t conditions deviating from aec q100-012 may influence the specified short ci rcuit cycle number in the datasheet. 6) the total reverse current (sum of i gnd , i is and - i in ) is limited by -v s(rev)_max and r vs . 7) t c 125c 8) esd susceptibility, hbm according to ansi/esda/jedec js-001 table 2 absolute maximum ratings (cont?d) 1) t j = -40c to +150c; (unl ess otherwise specified) parameter symbol values unit note / test condition number min. typ. max.
data sheet 10 rev. 1.3, 2014-06-03 BTS50015-1TAA general product characteristics figure 4 maximum single pulse current vs. pulse time, t j 150c, t amb = 85c above diagram shows the maximum single pulse curr ent that can be driven for a given pulse time t pulse . the maximum reachable current may be smaller depending on the current limitation level. pulse time may be limited due to thermal protection of the device. 0 50 100 150 200 250 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 i l,max [a] t pulse [sec]
BTS50015-1TAA general product characteristics data sheet 11 rev. 1.3, 2014-06-03 4.2 functional range note: within the functional or operating range, the ic operat es as described in the circuit description. the electrical characteristics are specif ied within the conditions given in th e electrical char acteristics table. table 3 functional range parameter symbol values unit note / test condition number min. typ. max. nominal operating voltage v s(op) 8 ? 18 v ? 4.2.1 extended operating voltage v s(op_ext) 5.3 ? 28 v 1) v in 2.2v i l i l(nom) t j 25c parameter deviations possible 1) not subject to production test. specified by design 4.2.2 5.5 ? 28 v 1) v in 2.2v i l i l(nom) t j = 150c parameter deviations possible extended operating voltage contain short dynamic undervoltage capability v s(dyn) 3.2 2) 2) t a = 25c; r l = 0.5 ; pulse duration 6ms; cranking capability is dependi ng on load and must be verified under application conditions ?28 v 1) acc. to iso7637 4.2.3 undervoltage turn off voltage v s(uv_off) ??4.5v 1) v in 2.2v r l = 270 v s decreasing see figure 19 4.2.4 undervoltage shutdown hysteresis v s (uv)_hys ?500 1) ?mv r l = 270 see figure 19 4.2.6 slewrate at out |d v ds / dt| ??10 1) v/ s| v ds | < 3v see chapter 5.1.4 4.2.7 drain to source voltage in off condition v ds_off ??28v 1) vin 0.8 v 4.2.8
data sheet 12 rev. 1.3, 2014-06-03 BTS50015-1TAA general product characteristics 4.3 thermal resistance note: this thermal data was generated in accordance wit h jedec jesd51 standards. fo r more information, go to www.jedec.org . figure 5 is showing the typical thermal impedance of BTS50015-1TAA mounted according to jedec jesd51- 2,-5,-7 at natural convection on fr4 1s0p and 2s2p boards. figure 5 typical transient thermal impedance z th(ja) =f(time) for different pcb conditions table 4 thermal resistance parameter symbol values unit note / test condition number min. typ. max. junction to case r thjc ??0.5k/w 1) 1) not subject to production test, specified by design. 4.3.1 junction to ambient r thja(2s2p) ?20?k/w 1)2) 2)specified r thja value is according to jedec jesd51-2,-5,-7 at natural convection on fr4 2s2p board; the product (chip+package) was simulated on a 76.2 114.3 1.5 mm board with 2 inner copper layers (2 x 70 m cu, 2 x 35 m cu). where applicable a thermal via array under the ex posed pad contacted the first inner copper layer. t a =25c. device is dissipating 2w power. 4.3.2 junction to ambient r thja ?70?k/w 1)3) 3)specified r thja value is according to jedec jesd51-2,-5,-7 at natural convection on fr4 1s0p board; the product /chip+package) was simulated on a 76.2 x 114.3 x 1.5 mm board with only one top copper layer 1x70 m. t a =25c. device is dissipating 2w power. 4.3.3 0.01 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10 100 1000 tim e [s ] zthja [k/w] jedec 1s0p jedec 2s2p
BTS50015-1TAA functional description data sheet 13 rev. 1.3, 2014-06-03 5 functional description 5.1 power stage the power stage is built by a n-channel power mosfet (dmos) with charge pump. 5.1.1 output on-state resistance the on-state resistance r ds(on) depends on the supply voltage as well as the junction temperature t j . figure 31 shows the dependencies in terms of temperature and supp ly voltage, for the typica l on-state resistance. the behavior in reverse polarity is described in chapter 5.3.5 . a high signal (see chapter 5.2 ) at the input pin causes the power dmos to switch on with a dedicated slope, which is optimized in terms of emc emission. 5.1.2 switching a resistive load figure 6 shows the typical timing when switching a resist ive load. the power stage has a defined switching behavior. defined slew rates results in lowest emc emission at minimum switching losses. figure 6 switching a resistive load:timing the connection to the load as well as the load itself (i f not purely resistive) bring an inductive component. for that reason the drain to source voltage of the BTS50015-1TAA during switch off can differ compared to the pure resistive load condition (see figure 7 ). it must be assured that under these conditions the drain to source voltage does not exceed the v ds(cl)min . if v ds(cl)min is exceeded, a free wheeling path should be implemented following the recommendation provided in the next chapter. v out 50% v s 25% v s 10% v s 90% v s v out i out i out v in v in t off_delay t off t on_ delay t on ? v/ ? t on ? v/ ? t off
data sheet 14 rev. 1.3, 2014-06-03 BTS50015-1TAA functional description figure 7 effect of the wire inductance 5.1.3 switching an inductive load when switching off induct ive loads with high side switches, the voltage v out is driven below ground potential, due to the fact that the inductance intends to continue driv ing the current. to prevent the destruction of the device due to high voltages, the device implements an over voltage protection, which cl amps the voltage between v s and v out at v ds(cl) (see figure 8 ). nevertheless it is not recommended to operate the device re petitively under this conditi on. therefore, when driving inductive loads, a free wheeling diode must be always placed. figure 8 overvoltage clamp v ds i l v ds i l v ds( cl) v ds(cl) t t t t pure resistive load resistive load with wire inductance v bat v out i l l, r l v s out v ds logic in v in overvoltage clamp r vs gnd
BTS50015-1TAA functional description data sheet 15 rev. 1.3, 2014-06-03 figure 9 switching an inductance with or without free wheeling diode it is important to verify the effectiv eness of the freewheeling solution (see figure 9 ), which means the selection of the proper diode and of an appropriate free wheeling path. with regard to the choice of the free wheeling diode, low threshold and fast response are key pa rameter to achieve an effective result. moreover the diode should be placed in order to have the shortest wire connection with the load (see figure 10 ). figure 10 optimization of the free wheeling path v in v out i l v s v s -v ds( cl) t t t v in v out i l v s v s -v ds(cl) t t t without free wheeling diode with free wheeling diode inductive load free w heeling diode free w heeling diode not optimized free wheeling path recommended free wheeling pat h inductive load bts50015 -1 taa bts50015 -1 taa
data sheet 16 rev. 1.3, 2014-06-03 BTS50015-1TAA functional description 5.1.4 inverse curre nt capability in case of inverse current, meaning a voltage v out(inv) at the output higher than the supply voltage v s , a current i l(inv) will flow from output to v s pin via the body diode of the power transistor (please refer to figure 11 ). in case the in pin is high, the power dmos is already activated and keeps on. in case, the input goes from ?l? to ?h?, the dmos will be activated. under inverse condition, the de vice is not overtemperature / overload pr otected. the is pin is high impedance. due to the limited speed of inv comparator, the output voltage slope needs to be limited. figure 11 inverse current circuitry figure 12 inverse behavior - timing diagram 5.1.5 pwm switching for pwm switching application, a t in(resetdelay) parameter should be respected by defining the maximum pwm frequency (see figure 22 ). the average power over time must be below the specified value (see paramater 4.1.15) and is defined as (see figure 13 ): p tot = (switching_on_energy + switching_off_energy + i l 2 * r ds(on) * t dc ) / period for system with pwm switchin g, the maximum retry cycle ( f fault ) under fault condition should not be exceeded. out v s v bat i l( in v) ol comp. v out (inv) inv comp. gate dr iver gnd v out v s < t p, in v ,n o f au l t i is i is(fault) t off (trip ) internal fault -flag set t t v out v s > t p, in v ,n o f au l t i is t sis(on)_j t t (a) inverse spike during on -m ode for short times (< t p,inv,nofault ) ( b) inverse spike during on - m ode for times > t p,inv ,nofault v out v s i is t p, n o in v, f au l t t t ( c) inver se spike dur ing on -mode with short cir cuit after leaving inverse mode i is(fault) t pis(fault )
BTS50015-1TAA functional description data sheet 17 rev. 1.3, 2014-06-03 figure 13 switching in pwm 5.2 input pins 5.2.1 input circuitry the input circuitry is compatible with 3.3v and 5v microcontrollers or can be directly driven by v s . the concept of the input pin is to react to volta ge threshold. with the schmitt trigger , the output is either on or off. figure 14 shows the electrical equi valent input circuitry. figure 14 input pin circuitry 5.2.2 input pin voltage the in uses a comparator with hysteresis. the switching on / off takes place in a defined region, set by the threshold v in(l) max and v in(h) min. the exact value where on and of f take place depends on the process, as well as the temperature. to avoid cross talk and parasiti c turn on and off, an hysteresis is implemented. this ensures immunity to noise. v in t v in _ h v in _ l t p tot p t dc in i in r vs v s gnd
data sheet 18 rev. 1.3, 2014-06-03 BTS50015-1TAA functional description 5.3 protection functions the device provides embedded protecti ve functions. integrated protection f unctions are designed to prevent the destruction of the ic from fault conditions described in th e datasheet. fault conditions are considered as ?outside? normal operating range. protection func tions are designed neither for cont inuous nor for repetitive operation. figure 15 describes the typical functionality of the diagnosis an d protection block. figure 15 diagram of diagnosis & protection block 5.3.1 loss of ground protection in case of loss of module or device ground, where the load remains connected to ground, the device protects itself by automatically turning off (when it was previously on) or remains off, regardless of the voltage applied on in pin. it is recommended to use input resistors between the microcontroller and the BTS50015-1TAA to ensure switching off of channel. in case of loss of module or device ground, a current ( i out(gnd) ) can flow out of the dmos. figure 16 sketches the situation. figure 16 loss of ground protection with external components driver logic rq sq esd protection v s r is current sense out i is ( fa u lt ) is v is i l gnd v b ,is inverse comparator vs i is 1 if v out < v s(int ) -3v: i l >i cl ? j > ? jt & in fault v ds (i l /d k il is ) i is 0 r vs & driver t in(reset delay) 30mv over - current v s( in t) 2v 0 1 & 0 1 v bat z (az )g nd r vs v s logic r is r in v in z (az )i s z (e sd -h) in is out gnd z (esd-l)
BTS50015-1TAA functional description data sheet 19 rev. 1.3, 2014-06-03 5.3.2 protection during loss of load or loss of v s condition in case of loss of load with charged primary inductanc es the maximum supply voltage has to be limited. it is recommended to use a z-diode, a varistor or v s clamping power switches with co nnected loads in parallel. the voltage must be limited according to the minimu m value of the parameter 6.1.33 indicated in table 6 . in case of loss of v s connection, the inductance of the wire and/or of the load should be taken into account and should be demagnetized by providing a proper current path. it is recommended to protect the device using a zener diode together with a( v z1 + v d1 < 16v), as shown in figure 17 . for a proper restart of the device after loss of v s , the input voltage must be applied delayed to the supply voltage. this can be realized by an capacitor between in and gnd (see figure 51 ). for higher clamp voltages, currents through all pins have to be limited according to the maximum ratings. please see figure 17 and figure 18 for details. figure 17 loss of v s figure 18 loss of load r vs lo gic r in r is v bat v in r/l cable v s out in is gnd (a) (b) ext. components acc . to either (a) or (b) required, not both load z 1 d 1 z 1 d 1 r vs logic r in r is v bat v in v s out in is gnd l/r cable r/l cable load z 2
data sheet 20 rev. 1.3, 2014-06-03 BTS50015-1TAA functional description 5.3.3 undervoltage behavior if the supply voltage is in the area below v s(uv_off) , the device is off (turns off). as soon as the supply voltage is above v s(op_ext)_min , the device will switch on again. figure 19 sketches the undervoltage behavior. figure 19 undervoltage behavior 5.3.4 overvoltage protection in case v s(sc)_max < v s < v ds(cl) , the device will switch on/off as in nominal voltage range . parameters may deviate from the specified limits and the lifetime is reduced. the BTS50015-1TAA provides an overvoltage clamp func tionality, which suppresses non nominal overvoltage transients by actively clamping the voltage across the power stage (see table 6 , parameters 6.1.11). the clamping voltage v ds(cl) is depending on the junction temperature t j and load current i l (see figure 20 for details). a repetitive operation under clamping condition must be avoided. v out v s v s(uv_off) v in 2.2v v s(op_ext)_min
BTS50015-1TAA functional description data sheet 21 rev. 1.3, 2014-06-03 figure 20 overvoltage protecti on with external components 5.3.5 reverse polarity protection in case of reverse polarity, the intrinsic body diode of the power dmos causes power dissipation. to limit the risk of overtemperature, the device provides infineon ? reversave function. the power in this intrinsic body diode is limited by turning the dmos on. the dmos resistance is then equal to r ds(on)_rev . additonally, the current into the logic ha s to be limited. the device includes a r vs resistor which limits the current in the diodes. to avoid overcurrent in the r vs resistor, it is nevertheless recommended to use a r in resistor. please refer to maximum current described in chapter 4.1 . figure 21 shows a typical application. r is is used to limit the current in the sense transistor which behaves as a diode. the recommended typical values for r in is 4.7k and for r sense 1k . figure 21 reverse polarity protection with external components r vs logic r in r is v bat v in v s out in is gnd z (e sd- h) z (az)is z( az)gnd z (esd -l ) r vs r in r is -v bat v s out in is gnd z (esd -h ) z (az)is z( az)gnd - i l - i gnd - i is i in i rvs re v. on micro- controller dout gnd z (esd-l)
data sheet 22 rev. 1.3, 2014-06-03 BTS50015-1TAA functional description 5.3.6 overload protection in case of overload, high inrush cu rrent or short circuit to ground, the BTS50015-1TAA offers several protection mechanisms. any protective switch off latches the output. to restart the de vice, it is necessary to set in=low for t > t in(resetdelay) . this behavior is known as latch behavior. figure 22 gives a sketch of the situation. 5.3.6.1 activation of the switch into short circui t (short circuit type 1) when the switch is activated into short circ uit, the current will rais e until reaching the i l(trip) value. after t off(trip) , the device will turn off and latches until the in pin is set to low for t > t in(resetdelay) . an undervoltage shutdown will not reset the latched fault overcurrent. for overload (sho rt circuit or overtemperat ure), the maximum retry cycle ( f fault ) under fault condition must be considered. 5.3.6.2 short circuit appearance when the d evice is already on (s hort circuit type 2) when the device is in on state and a short circuit to ground appears at the output (sc2) with a overcurrent higher than i l(trip) for a time longer than t off(trip) , the device automatically turns off and latches until the in pin is set to low for t > t in(resetdelay) . an undervoltage shutdo wn will not reset the latc hed fault overcurrent. 5.3.7 temperature limita tion in the power dmos the BTS50015-1TAA incorporates an absolute ( t j(trip) ) temperature sensor. activati on of the sensor will cause an overheated channel to switch off to prevent destruct ion. the device restarts when the in pin is toggled and the temperature has decreased below t j(trip) - t j(trip) . an undervoltage shutdown may not reset the fault over temperature. figure 22 overload protection in t i l t i is t 0 i is(fault) t j t t a t j(trip) t off (trip ) start input disable input disable t off ( trip) t in(resetdelay) input dis able i is(fault) disable i is(fault) disable i is ( f au l t ) disable short circuit 1 short circuit 2 overtemperature i cl(0) i cl(1)
BTS50015-1TAA functional description data sheet 23 rev. 1.3, 2014-06-03 the current sense exact signal timing can be found in the chapter 5.4 . it is represented here only for device?s behavior understanding. in order to allow the device to detect overtemperature co nditions and react effectively, it is recommended to limit the power dissipation below p tot (parameter 4.1.15).
data sheet 24 rev. 1.3, 2014-06-03 BTS50015-1TAA functional description 5.4 diagnostic functions for diagnosis purposes, the BTS50015-1TAA provides a combination of digital and analog signal at pin is. 5.4.1 is pin the BTS50015-1TAA provides an enhanced current sense signal called i is at pin is. as long as no ?hard? failure mode occurs (short circuit to gnd / overcu rrent / overtemperature) and the condition v is v out - 5v is fulfilled, a proportional signal to the load current (ratio k ilis = i l / i s ) is provided. the complete is pin and diagnostic mechanism is described in figure 23 . the accuracy of the sense current depends on temperature and load current. in case of failure, a fixed i is(fault) is provided. in order to enable the fault current reporting, the condition v s - v out > 2v must be fulfilled. in order to get the fault current in the specified range, the condition v s - v is 5v must be fulfilled. figure 23 diagnostic block diagram 5.4.2 sense signal in different operation mode table 5 sense signal, function of operation mode 1) 1) z = high impedance operation mode input level output level v out diagnostic output (is) 2) 2) see chapter 5.4.3 for current sense range and improved current sense accuracy normal operation low (off) ~ gnd i is(off) short circuit to gnd gnd z overtemperature z z short circuit to vs v s z open load z z inverse current > v s z normal operation high (on) ~ v s i is = ( i l / d k ilis ) i is0 overcurrent condition < v s i is = ( i l / d k ilis ) i is0 ... i is(fault) short circuit to gnd ~ gnd i is(fault) overtemperature t j(trip) event z i is(fault) short circuit to vs v s i is = 0 ... i l / d k ilis i is0 open load ~ v s i is0 inverse current > v s z v s i is(fault) is 0 1 fault z is(az) r vs v s -v out >2 v & (i l / dk ilis ) i is0
BTS50015-1TAA functional description data sheet 25 rev. 1.3, 2014-06-03 5.4.3 sense signal in the nominal current range figure 24 and figure 25 show the current sense as function of th e load current in the power dmos. usually, a pull-down resistor r is is connected to the current sense pin is. a typical value is 1k . the dotted curve represents the typical sense cu rrent, assuming a typical dk ilis factor value. the range between the two solid curves shows the sense accuracy the device is able to provide, at a defined current. (1) where the definition of d k ilis is: (2) figure 24 current sense for nominal and overload condition 5.4.3.1 sense signal va riation and calibration in some application, an enhanced accuracy is re quired around the device nominal current range i l(nom) . to achieve this accuracy requirement, a calibration on the application is possible. afte r two points calibration, the BTS50015-1TAA will have a limited i is value spread at different load currents and temperature conditions. the i is i is i l dk ilis --------------- i is 0 = with i is 0 () 4 i l 1 ? i is 4 i is 1 ? ----------- ------------ = i l3 i l4 i l2 i l1 i is0(max) dk ilis (min) dk ilis (typ) dk ilis (max) 0 0.5 1 1.5 2 2.5 3 3.5 0 20 40 60 80 100 120 140 160 i is (ma) i l (a)
data sheet 26 rev. 1.3, 2014-06-03 BTS50015-1TAA functional description variation can be described with the parameters ( d k ilis(cal) ) and the is0 . the blue solid line in figure 25 is the current sense ratio after the two point calibration. the slope of this line is defined as follow: (3) the bluish in area in figure 25 is the range where the current sense ratio can vary after performing the calibration. the accuracy of the load current sensing is improved and, given a sense current value i is (measured in the application), the load current can be calculated as follow: (4) where d k ilis(cal) is the current sense ratio measured after two-points calibration (defined in equation (3) ), i is0(cal) is the current sense offset (calculat ed after two points calibration, see equation (5) ), t x is the operating temperature, and t cal is temperature at which the ca libration is performed (25c). the equation (4) actually provides two values for load current, considering that ( d k ilis(cal) ) can be both positive and negative (see parameter 6.1.47 in table 6 ). (5) figure 25 improved current sense accuracy after 2-point calibration 1 dk kilis cal () -------------- -------------- - i scal () 2 i scal () 1 ? i lcal () 2 i lcal () 1 ? --------------------- ------------------- - = i l dk ilis cal () 1 dk ilis cal () () 100 ------------------- --------------- + ?? ?? i is i is 0 cal () 1 is 0 t x t cal ? () + ------------------ -------------- --------------- ? ?? ?? ?? = i i s0(cal) i scal () 1 i lcal () 1 dk ilis cal () ------------- ------------ ? i scal () 2 i lcal () 2 dk ilis cal () ------------- ------------ ? == i is i l calibration points i is(cal)1 i l(cal)2 i l(cal)1 8% i is(cal)2 i is0(cal) 8% ilis(cal) dk 1 i is i l
BTS50015-1TAA functional description data sheet 27 rev. 1.3, 2014-06-03 5.4.3.2 sense signal timing figure 26 shows the timing during settling and disabling of the sense. figure 26 fault acknowledgement 5.4.3.3 sense signal in case of short circuit to v s in case of a short circuit between out and vs pin, a major part of the load current will fl ow through the short circuit. as a result, a lower current compared to the nominal op eration will flow through the dmos of the BTS50015-1TAA, which can be recognized at the current sense signal. 5.4.3.4 sense signal in case of over load an over load condition is defined by a current flo wing out of the dmos reaching the current over load i cl or the junction temperature reaches the thermal shutdown temperature t j(trip) . please refer to chapter 5.3.6 for details. in that case, the sense sign al will be in the range of i is(fault) when the in pin stays high. this is a device with latch function . the state of the device will remain and the sense signal will remain on i is(fault) until a reset signal comes from the in pin. for example, when a thermal shutdown happened, even the over temperature condition was disappeared, the dmos can only be reactivated when a reset signal is send to the in pin. t t t t v in short / overtemp. v out i is i is 1 .. 4 i is(fault) latch no reset reset t of f < t in (resetdelay) t of f > t in (resetdelay) 3v i is ( fa u lt ) i is 1 .. 4 t t t t v in short circuit v out i is v out i l i is t on 90% of i l static t sis(on) 90% of i s static t pis (o n)_90 v in t t t t t pis(fau lt) t sis(on)_j
data sheet 28 rev. 1.3, 2014-06-03 BTS50015-1TAA electrical characteristics BTS50015-1TAA 6 electrical characte ristics BTS50015-1TAA 6.1 electrical characteristics table table 6 electrical characteristics: BTS50015-1TAA v s = 8 v to 18 v, t j = -40c to +150c (unl ess otherwise specified) for a given temperature or voltage rang e, typical values are specified at v s = 13.5v, t j = 25c parameter symbol values unit note / test condition number min. typ. max. operating and standby currents operating current (channel active) i gnd ?1.23ma v in 2.2v 6.1.1 standby current for whole device with load at ambient i s(off) ?718 a 1) v s = 18v v out = 0v v in 0.8v t j 85c see figure 27 see figure 28 6.1.2 maximum standby current for whole device with load at max junction i s(off) ? 30 1000 a v s = 18v v out = 0v v in 0.8v t j 150c see figure 27 see figure 28 6.1.3 power stage on state resistance in forward condition r ds(on) ?2.13m i l = 135a v in 2.2v t j = 150c see figure 31 6.1.4 on state resistance in forward condition, low battery voltage r ds(on) ?510m i l = 20a v in 2.2v v s = 5.5v t j = 150c see figure 33 6.1.5 on state resistance in forward condition r ds(on) ?1.5?m 1) i l = 135a v in 2.2v t j = 25c see figure 31 6.1.6 on state resistance in inverse condition r ds(on)_inv ?2.13.1m i l = -135a v in 2.2v t j = 150c see figure 11 6.1.7 on state resistance in inverse condition r ds(on)_inv ?1.5?m 1) i l = -135a v in 2.2v t j = 25c see figure 11 6.1.8
BTS50015-1TAA electrical characteristics BTS50015-1TAA data sheet 29 rev. 1.3, 2014-06-03 nominal load current i l(nom) 33 39 ? a t a = 85c 2) t j 150c 6.1.9 drain to source clamp voltage v ds(cl) = v s - v out v ds(cl) 28 ? 60 v i ds = 50ma see figure 39 6.1.11 output leakage current at ambient i l(off) ?315 a 1) v in 0.8v v out = 0v t j 85c 6.1.13 output leakage current at max junction temperature i l(off) ? 30 1000 a v in 0.8v v out = 0v t j = 150c 6.1.14 turn on slew rate v out = 25% to 50% v s dv / dt on 0.05 0.23 0.5 v/ s r l = 0.5 v s = 13.5v see figure 6 see figure 33 see figure 34 see figure 35 see figure 36 6.1.15 turn off slew rate v out = 50% to 25% v s -dv / dt off 0.05 0.25 0.55 v/ s6.1.16 turn on time to v out = 90% v s t on ? 220 700 s6.1.17 turn off time to v out = 10% v s t off ? 300 700 s6.1.18 turn on time to v out = 10% v s t on_delay ?80150 s6.1.19 turn off time to v out = 90% v s t off_delay ? 230 500 s6.1.20 switch on energy e on ?7?mj 1) r l = 0.5 v s = 13.5v see figure 37 6.1.21 switch off energy e off ?5?mj 1) r l = 0.5 v s = 13.5v see figure 38 6.1.22 table 6 electrical characteristics: BTS50015-1TAA (cont?d) v s = 8 v to 18 v, t j = -40c to +150c (unl ess otherwise specified) for a given temperature or voltage rang e, typical values are specified at v s = 13.5v, t j = 25c parameter symbol values unit note / test condition number min. typ. max.
data sheet 30 rev. 1.3, 2014-06-03 BTS50015-1TAA electrical characteristics BTS50015-1TAA input pin low level input voltage v in(l) ? ? 0.8 v see figure 41 6.1.23 high level input voltage v in(h) 2.2 ? ? v see figure 42 6.1.24 input voltage hysteresis v in(hys) ? 200 ? mv 1) 6.1.25 low level input current i in(l) 8?? a v in = 0.8v 6.1.26 high level input current i in(h) ??80 a v in 2.2v 6.1.27 protection: loss of ground output leakage current while module gnd disconnected i out(gnd_m) 0 30 1000 a 1)3) v s = 18v v out = 0v is & in pins open gnd pin open t j = 150c see figure 16 6.1.28 output leakage current while device gnd disconnected i out(gnd) 0 30 1000 a v s = 18v gnd pin open v in 2.2v 1k pull down from is to gnd 4.7k to in pin t j = 150c see figure 16 see figure 43 6.1.29 protection: reverse polarity on state resistance in infineon ? reversave r ds(on)_rev ??3.2m v s = 0v v gnd = v in =16v i l = -20a t j = 150c see figure 21 6.1.30 on state resistance in infineon ? reversave r ds(on)_rev ?1.5?m 1) v s = 0v v gnd = v in =16v i l = -20a t j = 25c see figure 46 6.1.31 integrated resistor r vs ?6090 t j = 25c 6.1.32 table 6 electrical characteristics: BTS50015-1TAA (cont?d) v s = 8 v to 18 v, t j = -40c to +150c (unl ess otherwise specified) for a given temperature or voltage rang e, typical values are specified at v s = 13.5v, t j = 25c parameter symbol values unit note / test condition number min. typ. max.
BTS50015-1TAA electrical characteristics BTS50015-1TAA data sheet 31 rev. 1.3, 2014-06-03 protection: overvoltage overvoltage protection gnd pin to v s v s(az)_gnd 64 70 80 v see figure 20 see figure 40 6.1.33 overvoltage protection is pin to v s v s(az)_is 64 70 80 v gnd and in pin open see figure 20 see figure 40 6.1.34 protection: overload current trip detection level i cl(0) 135 175 ? a v s = 13.5v, static t j = 150c see figure 22 6.1.35 i cl(0) 145 185 ? a v s = 13.5v, static t j = -40...25c see figure 22 current trip maximum level i cl(1) ? 190 250 a 1) v s = 13.5v dil/dt = 1a/ s see figure 44 overload shutdown delay time t off(trip) ?12? s 1) 6.1.36 thermal shutdown temperature t j(trip) 150 170 1) 200 1) c see figure 22 6.1.37 thermal shutdown hysteresis t j(trip) ?10?k 1) 6.1.38 diagnostic function: sense pin sense signal current in fault condition i is(fault) 468ma v in = 4.5v v s - v is 5v 6.1.40 diagnostic function: current sense ratio signal in the nominal area, stable current load condition current sense differential ratio dk ilis 43700 51500 58200 ? i l4 = 135a i l1 = 20a see equation (2) 6.1.41 current sense i l = i l0 = 50ma i is0 ?1200 a v in 2.2v v s - v is 5v t j = -40c see figure 24 6.1.42 ?1150 a v in 2.2v v s - v is 5v t j 25c see figure 24 current sense i l = i l1 = 20a i is1 190 390 650 a v in 2.2v v s - v is 5v see figure 24 6.1.43 current sense i l = i l2 = 40a i is2 530 780 1110 a6.1.44 table 6 electrical characteristics: BTS50015-1TAA (cont?d) v s = 8 v to 18 v, t j = -40c to +150c (unl ess otherwise specified) for a given temperature or voltage rang e, typical values are specified at v s = 13.5v, t j = 25c parameter symbol values unit note / test condition number min. typ. max.
data sheet 32 rev. 1.3, 2014-06-03 BTS50015-1TAA electrical characteristics BTS50015-1TAA current sense i l = i l3 = 80a i is3 1.22 1.55 2.02 ma v in 2.2v v s - v is 5v see figure 24 6.1.45 current sense i l = i l4 = 135a i is4 2.16 2.60 3.28 ma 6.1.46 current sense ratio spread over temperature and repetitive pulse operation lafter 2-points calibration ( dk ilis(cal) ) ?8?% 1) see figure 25 6.1.47 temperature coefficient for i is0(cal) is0 ?3.8??/k 1) see equation (4) and equation (5) 6.1.54 diagnostic function: diagnostic timing in normal condition current sense propagation time until 90% of i is stable after positive input slope on in pin t pis(on)_90 0?700 s v in 2.2v v s = 13.5v r l = 0.5 see figure 26 6.1.48 current sense settling time to i is stable after positive input slope on in pin t sis(on) ? ? 3000 s v in 2.2v v s = 13.5v r l = 0.5 see figure 26 6.1.49 i is leakage current when in disabled i is(off) 00.051 a v in 0.8v r is =1k 6.1.50 current sense propagation time after load jump during on condition t sis(on)_j ? 350 ? s 1) v in 2.2v d i l / dt = 0.4a/ s 6.1.51 diagnostic function: diagnostic timing in overload condition current sense propagation time for short circuit detection t pis(fault) 0?100 s 1) v in 2.2v from v out = v s -3v to i is(fault)_min see figure 26 6.1.52 delay time to reset fault signal at is pin after turning off v in t in(resetdelay) 250 1000 1500 s 1) 6.1.53 timing: inverse behavior propagation time from v out > v s to fault disable t p,inv,nofault ?4? s 1) see figure 12 6.1.55 propagation time from v out < v s to fault enable t p,noinv,fault ?10? s 1) see figure 12 6.1.56 1) not subject to production test, specified by design 2) value is calculated from the parameters typ. r thja(2s2p) , with 65k temperature increase, typ. and max. r ds(on) 3) all pins are disconnected except v s and out table 6 electrical characteristics: BTS50015-1TAA (cont?d) v s = 8 v to 18 v, t j = -40c to +150c (unl ess otherwise specified) for a given temperature or voltage rang e, typical values are specified at v s = 13.5v, t j = 25c parameter symbol values unit note / test condition number min. typ. max.
BTS50015-1TAA electrical characteristics BTS50015-1TAA data sheet 33 rev. 1.3, 2014-06-03 6.2 general product characteristics typical performanc e characteristics figure 27 standby current for whole device with load, i s(off) = f( v s , t j ) figure 28 standby current for whole device with load, i s(off) = f( t j ) at v s = 13.5v figure 29 gnd leakage current i gnd(off) = f( v s , t j ) figure 30 gnd leakage current i gnd(off) = f( t j ) at v s = 13.5v 0 5 10 15 20 25 30 35 40 0 102030 v s [v] i s(o ff) [a] -40c 0c 25c 85c 100c 125c 150c 0 5 10 15 20 25 30 -40 -20 0 20 40 60 80 100 120 140 160 i s(off) [a] t j [ o c] 0 0.5 1 1.5 2 2.5 3 3.5 4 0 5 10 15 20 25 30 v s [v] i gnd(off) -40c 0c 25c 85c 100c 125c 150c [ a ] 0 0.5 1 1.5 2 2.5 3 3.5 4 -40-20 0 20406080100120140160 i gnd(off) [a] t j [ o c]
data sheet 34 rev. 1.3, 2014-06-03 BTS50015-1TAA electrical characteristics BTS50015-1TAA figure 31 on state resistance r ds(on) = f( v s , t j ), i l = 20a ... 135a figure 32 on state resistance r ds(on) = f( t j ), v s = 13.5v, i l = 20a...135a figure 33 turn on time t on = f( v s , t j ), r l = 0.5 figure 34 turn off time t off = f( v s , t j ), r l = 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5 7 9 11 13 15 v s [v] r ds(on ) [m ? ] -40c 25c 150c 0 0.5 1 1.5 2 2.5 -40-20 0 20406080100120140160 t j [c] r ds(on) [m ? ] 0 200 400 600 800 1000 1200 0 5 10 15 20 25 30 v s [v] t on [s] -40c 25c 150c 0 50 100 150 200 250 300 350 400 450 0 5 10 15 20 25 30 v s [v] t off [s] -40c 25c 150c
BTS50015-1TAA electrical characteristics BTS50015-1TAA data sheet 35 rev. 1.3, 2014-06-03 figure 35 slew rate at turn on dv / t on = f( v s , t j ), r l = 0.5 figure 36 slew rate at turn off dv / t off = f( v s , t j ), r l = 0.5 figure 37 switch on energy e on = f( v s , t j ), r l = 0.5 figure 38 switch off energy e off = f( v s , t j ), r l = 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 5 10 15 20 25 30 v s [v] dv/ dt on [v/s] -40c 25c 150c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 5 10 15 20 25 30 v s [v] dv/ dt off [v/s] -40c 25c 150c 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 v s [v] e on [mj] -40c 25c 150c 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 v s [v] e off [mj] -40c 25c 150c
data sheet 36 rev. 1.3, 2014-06-03 BTS50015-1TAA electrical characteristics BTS50015-1TAA figure 39 drain to source clamp voltage v ds(cl) = f( t j ), i l = 50ma figure 40 overvoltage protection v s(az)_gnd = f( t j ), v s(az)_is = f( t j ) figure 41 low level input voltage v in(l) = f( v s , t j ) figure 42 high level input voltage v in(h) = f( v s , t j ) 30 32 34 36 38 40 42 44 -40 -20 0 20 40 60 80 100 120 140 160 t j [c] v ds(cl) [v] 60 62 64 66 68 70 72 74 76 78 80 -40 -20 0 20 40 60 80 100 120 140 160 t j [c] v s(az)_gnd , v s(az)_is [v] 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 5 10 15 20 25 30 v s [v] v in(l) [v] -40c 25c 150c 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 5 10 15 20 25 30 v s [v] v in(h) [v] -40c 25c 150c
BTS50015-1TAA electrical characteristics BTS50015-1TAA data sheet 37 rev. 1.3, 2014-06-03 figure 43 output leakage current while device gnd disconnected, i out(gnd) = f( v s , t j ) figure 44 overload detection current i cl(1) = f( di l / dt , t j ), v s = 13.5v figure 45 resistance in reversave r ds(on)_rev = f( v s , t j ), i l = -120a figure 46 resistance in reversave r ds(on)_rev = f( v s , t j ), i l = -20a 0 5 10 15 20 25 0 5 10 15 20 25 30 v s [v] i ou t(gnd) [a] -40c 25c 150c 0 50 100 150 200 250 300 350 400 0246810 di l / dt [a/s] i cl(1) [a] -40c 25c 150c 0 2 4 6 8 10 12 14 16 4 6 8 10 12 14 16 18 v s [v] r ds(on)_rev [m ? ] -40c 25c 150c 0 2 4 6 8 10 12 14 16 4 6 8 1012141618 v s [v] r ds(on)_rev [m ? ] -40c 25c 150c
data sheet 38 rev. 1.3, 2014-06-03 BTS50015-1TAA electrical characteristics BTS50015-1TAA figure 47 input current i in = f( t j ) v s = 13.5v; v in(l) = 0.8v; v in(h) = 5.0v figure 48 input current i in = f( v in , t j ) v s =13.5v figure 49 gnd current i gnd = f( v s , t j ) v in = 2.2v 0 10 20 30 40 50 60 -40 -20 0 20 40 60 80 100 120 140 160 t j [c] i in [a] iin( l) iin( h) 0 10 20 30 40 50 60 02468101214 v in [v] i in [a] -40c 25c 150c 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 4 8 12 16 20 24 28 v s [v] i gnd [ma] -40c 25c 150c
BTS50015-1TAA package outlines data sheet 39 rev. 1.3, 2014-06-03 7 package outlines figure 50 pg-to-263-7-8 (rohs-compliant) green product (rohs compliant) to meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. green products are rohs-compliant (i.e pb-free finish on leads and suitable for pb-free soldering according to ipc/jedec j-std-020). dimensions in mm ?.2 gpt09063 10 8.5 1) (15) ?.2 9.25 ?.3 1 0...0.15 6 x 0.6 ?.1 ?.1 1.27 4.4 b 0.5 ?.1 ?.3 2.7 4.7 ?.5 ?.3 1.3 2.4 typical metal surface min. x = 7.25, y = 6.9 all metal surfaces tin plated, except area of cut. 1) 0.1 b 0...0.3 a 7.55 1) 6 x 1.27 m 0.25 ab 0.1 0.05 8? max. for further information on alternativ e packages, please vi sit our website: http://www.infineon.com/packages .
data sheet 40 rev. 1.3, 2014-06-03 BTS50015-1TAA application information 8 application information note: the following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. figure 51 application diagram with BTS50015-1TAA note: this is a very simplified example of an application ci rcuit. the function must be verified in the real application. note: this application circuit is valid only if the device does not enter the clamping mode, otherwise the recommendation in figure 52 are valid. table 7 bill of material reference value purpose r in 4.7k protection of the microcontroller during overvoltage, reverse polarity allows BTS50015-1TAA channels off during loss of ground r is 1k sense resistor r sense 4.7k protection of the microcontroller during overvoltage protection of the BTS50015-1TAA during reverse polarity z a zener diode protection of the BTS50015-1TAA during loss of load with primary charged inductance, see chapter 5.3.2 z b zener diode protection of the BTS50015-1TAA during loss of battery or against huge negative pulse at out (like iso pulse 1), see chapter 5.3.2 c sense 10nf sense signal filtering c vs1 100nf improved emc behavior (in layou t, pls. place close to the pins) out p5.x (a/d) vss vdd_p xc2x (p11_mr) r in in is gnd out v s v bat v dd c sense r sense r is c out c vs1 c in module ground module ground zb za c vs2 rcable load lcable r ecu l ecu r/l supply
BTS50015-1TAA application information data sheet 41 rev. 1.3, 2014-06-03 figure 52 application diagram with BTS50015-1TAA note: this is a very simplified example of an application ci rcuit. the function must be verified in the real application. note: this application circuit is valid also every time the de vice enters the clamping mode, although it is not driving a pure inductive load. c vs2 10 f to 22 f suppression of transient ov er voltages exceeding 4.2.8 c out 10nf improved emc behavior (in layou t, pls. place close to the pins) c in 150nf BTS50015-1TAA tends to latched switch-off due to short negative transients on supply pin; c in automatically resets the device table 8 bill of material reference value purpose r in 4.7k protection of the microcontroller during overvoltage, reverse polarity allows BTS50015-1TAA channels off during loss of ground r is 1k sense resistor r sense 4.7k protection of the microcontroller during overvoltage protection of the BTS50015-1TAA during reverse polarity z a zener diode protection of the BTS50015-1TAA during loss of load with primary charged inductance, see chapter 5.3.2 table 7 bill of material reference value purpose out p5.x (a/d) vss vdd_p xc2x (p11_mr) r in in is gnd out v s v bat v dd c sense r sense r is r/l supply r/l cable inductive load c out c vs1 c in z1 z2 z1 d g s options for free wheeling path of inductive load option a option b optional : mosfet to block reverse current module ground module ground t1 zb za c vs2
data sheet 42 rev. 1.3, 2014-06-03 BTS50015-1TAA application information z b zener diode protection of the BTS50015-1TAA during loss of battery or against negative huge pulses at out (like iso pulse 1), see chapter 5.3.2 z1 z2 schottky diode zener transient suppressor protection of the BTS50015-1TAA when driving an inductive load. z2 is added in option a to demagnetize more quickly the inductance associated with the cable. only one of the two possible options a and b should be implemented t1 n-channel mosfet optional. it can be added to bl ock reverse current in protection diodes. c sense 10nf sense signal filtering c vs1 100nf improved emc behavior (in layout, pls. place close to the pins) c vs2 10 f to 22 f suppression of transient ov er voltages exceeding 4.2.8 c out 10nf improved emc behavior (in layout, pls. place close to the pins) c in 150nf BTS50015-1TAA tends to latched switch-off due to short negative transients on supply pin; c in automatically resets the device table 8 bill of material reference value purpose
BTS50015-1TAA application information data sheet 43 rev. 1.3, 2014-06-03 8.1 further application information ? please contact us for information regarding the pin fmea ? for further information you may contact http://www.infineon.com/
data sheet 44 rev. 1.3, 2014-06-03 BTS50015-1TAA revision history 9 revision history revision date changes 1.3 2014-06-03 chapter 1 , section ?application? slightly modified table 1 , symbol k ilis changed into dk ilis page 4 , embedded protection func tions slightly changed figure 1 slightly changed table 2 on page 8 , min value of the parameter 4.1.8 under condition t 2min added table 2 on page 10, parameter 4.1.12 removed figure 5 (maximum energy dissipation for inductive switch off, e a vs load current) removed table 3 on page 11 , absolute value added at parameter 4.2.7 table 3 on page 11 , parameter 4.2.8 added table 4 on page 12 , footnote 2 and 3 slightly modified chapter 5.1.2 modified and note removed chapters 5.1.3.1 and 5.1.3.2 removed chapter 5.1.3 modified figure 8 slightly modified figure 8 , caption modified figure 9 added figure 10 (old) removed figure 10 added figure 15 slightly modified figure 16 slightly modified chapter 5.3.2 slightly changed chapter 5.3.4 modified figure 20 slightly modified figure 21 slightly modified chapter 5.3.7 a sentence added figure 23 slightly modified table 5 on page 24 , diagnostic output of ?normal op eration?, ?overcurrent condition? and ?short circuit to vs? modified equation 3 replaced by equation (1) equation 4 replaced by equation (2) figure 24 changed chapter 5.4.3.1 modified former equation (5) removed equation (3) added equation (5) added former equation (6) replaced with equation (4) figure 25 changed table 6 on page 28 , parameter 6.1.2, footnote added table 6 parameter 6.1.41, description changed fr om ?current sense ratio? to ?current sense differential ratio? table 6 , parameter 6.1.41, symbol modified table 6 , parameter 6.1.42, one row added, differentiating the parameter according to the temperature range table 6 , parameter 6.1.43, min value added table 6 , parameter 6.1.43, max value modified table 6 , parameter 6.1.44, min value modified
BTS50015-1TAA revision history data sheet 45 rev. 1.3, 2014-06-03 table 6 , parameter 6.1.44, max value modified table 6 , parameter 6.1.45, min value modified table 6 , parameter 6.1.45, typ value modified table 6 , parameter 6.1.45, max value modified table 6 , parameter 6.1.46, min value modified table 6 , parameter 6.1.46, max value modified table 6 , parameter 6.1.47, parame ter description modified table 6 , parameter 6.1.47, parameter symbol changed table 6 , parameter 6.1.47, symbol added before the typ value table 6 , parameter 6.1.54, parame ter description modified table 6 , parameter 6.1.54, parameter symbol modified table 6 , parameter 6.1.54, typ value changed table 6 , parameter 6.1.54, parameter unit changed 1.2 2012-11-12 note added below figure 8 in 5.1.2 note added below figure 51in chapter 8 note added below figure 52in chapter 8 revision date changes
data sheet 46 rev. 1.3, 2014-06-03 BTS50015-1TAA revision history 1.1 2012-06-14 page 4, in the first bullet point, ?inductive? deleted table 1 on page 5, eighth row, ? t a = 85c? changed into ? t a =t j = 85c? table1, page 5, ninth row, ?t a = 85c? changed into ?t a = 25c? table 2 on page 10: parameter 4.1.13 removed table 2 on page 10: parameter 4.1.14 removed table 2 on page 10: parameter name 4.1.15 co rrected (typing error present in previous release) page 10, footnote 8) removed (refer to rev. 1.0) figure 4modified figure 5, e ar curve removed page 12, figure 6 removed (refer to rev. 1.0) chapter 5.1.3.2,page 16, last sentence added (?if the application requires the inductive load to be switched on/off repetitively, the recommendation in chapter 8must be followed?) figure 15modified chapter 5.3.2, page 20, third and fourth sent ences modified, from ?in case of loss of v s ? to ?...as shown in figure 17?. figure 17modified figure 18modified chapter 5.3.4, page 21, third row, parameter e ar deleted table 6 on page 30, parameter 6.1.23, va lue indicated as minimum is actually maximum table 6 on page 30, parameter 6.1.24, va lue indicated as maximum is actually minimum table 6 on page 31, word ?maximum? deleted from description of the parameter 6.1.40, figure 29 on page 33, unit of measurement (?ma?) added on y-axis figure 51, modified figure 51, ?driving r/c loads? added in the caption table 7 on page 40, fifth row deleted (refer to rev. 1.0) table 7 on page 40, two rows added (describing z a and z b) figure 52, added page 41note ?this represents only a recomme ndation for driving inductive loads. the function must be verified in the real application.? added table 8 on page 41, added 1.0 2011-10-25 datasheet release revision date changes
edition 2014-06-03 published by infineon technologies ag 81726 munich, germany ? 2014 infineon technologies ag all rights reserved. legal disclaimer the information given in this docu ment shall in no event be regarded as a guarantee of conditions or characteristics. with respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, infine on technologies hereby disclaims any and all warranties and liabilities of any kind, including witho ut limitation, warranties of non-infrin gement of intellectua l property rights of any third party. information for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements, components may contain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office. infineon technologies compon ents may be used in life-su pport devices or systems only with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safe ty or effectiveness of that de vice or system. life support devices or systems are intended to be implanted in the hu man body or to support an d/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of BTS50015-1TAA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X